Automated Extraction
Information System from HUD’s Images using ANN

Luiz Eduardo Guarino de Vasconcelos, DsC Student
André Yoshimi Kusumoto, MsC Student
Nelson Paiva Oliveira Leite, PhD
Cristina Moniz Araújo Lopes, PhD
Summary

• Introduction
• HUD System
• Application
• Challenges
• Algorithm
• Character Recognition
• Word Recognition
• Discussion
Introduction

• Motivation:
 – The execution of experimental Flight Test Campaign (FTC) provides all information required for the aircraft and/or its systems development, operation, certification and qualification.
 – For tactical operations, the Head-Up Display (HUD) is a key element to provide essential information for the pilot during the navigation and weapon enforcement flight regimen.
 – HUD projects navigation and weapon information in a user-defined symbolic form
 – Various FTC (e.g. weapon aiming) requires the analysis of HUD images
Introduction

• Motivation:
 – Therefore, a simple nonintrusive Flight Test Instrumentation (FTI) data gathering technique for such information is to record the HUD video frames and to embed such information into the FTI measurement set for post mission data analysis
 – Analysis is typically qualitative, where frames are manually observed and analyzed for information extraction
 – This process is very ineffective because in one flight test hour it 36,000 frames are generated
 – the data analysis process becomes complex, time consuming and suitable to failures
Introduction

• Solution: IPEV and ITA developed an image processing application with pattern recognition using the correlation process to extract information from different positions of the HUD images.
 – Image processing techniques
 – Classifier based on correlation to recognize words
 – Artificial Neural Network (ANN) to recognize characters
HUD System

- There are 26 letters and 10 numbers.
- All images of the characters must be normalized to the same size before using them in neural network training or testing.
- The most commonly used images in pattern recognition are binary images. Binary images require less computational intensity compared with other types of images.
- The neural network was initialized using Nguyen–Widrow algorithm, where the weights and biases in each layer are initialized and distributed approximately evenly over the input space.
Application

- A HUD embedded in EMBRAER A1 aircraft was used
- The HUD recorded into the camera's buffer all images of the test flight. Then recorded video is downloaded to the computer through its USB interface.
Challenges

• The scenario has a complex background that could change very rapidly which can result in significant change of lighting.
Challenges

• Process images to obtain better accuracy even in frames not cleaned (e.g. blurring, overlapping objects).

• Transitions between images produced by the HUD generate blurring areas.
Algorithm

- Although there are different patterns of images produced by HUD, all images have text in preset positions.
Algorithm

1. The video produced by HUD is converted to PNG (Portable Network Graphics) images;
2. The image template for each character and word are loaded from the database;
3. The HUD images are loaded in the application;
4. Each image is processed using steps:
 a. Threshold is applied to obtain a binary image;
 b. Adjustments are applied to the image depending on the gray level, background and histogram of the image;
Algorithm

• c. Identify setup mode because for each mode the set of information in the image is different.
• d. Character and word segmentation.
• e. Word recognition.
• f. Character recognition. Use of the ANN algorithm.
• g. The results are stored in an array structured with all the information recognized.
• 5. The results of the array can be visualized
Character Recognition

- 01 ANN was trained to recognize 36 different characters: 26 uppercase letters and 10 numbers.

Samples of letters and numbers used by the HUD
Character Recognition

- 6,998 binary images were used.
- Database had two non-overlapping groups.
- First group with 2,772 characters which is used only for neural network training.
- Second group with 4,226 characters, which is used only for neural network testing.
Word Recognition

• For the recognition of words a correlation algorithm was used

\[r = \frac{\sum_m \sum_n (A_{mn} - \overline{A})(B_{mn} - \overline{B})}{\sqrt{\sum_m \sum_n (A_{mn} - \overline{A})^2 \sum_m \sum_n (B_{mn} - \overline{B})^2}} \]

• For this algorithm step, a database of templates was created for each word. Table shows examples of the words that can appear in each image region

<table>
<thead>
<tr>
<th>Region</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu</td>
<td>MAIN, NEW TARGET, TGT</td>
</tr>
<tr>
<td>Top</td>
<td>AREA, INR, POINT, SLEW, SLV TGT, SLV VIS</td>
</tr>
<tr>
<td>Setup Mode</td>
<td>AG, LITEN IBIT, LITEN NTO, LITEN STBY</td>
</tr>
<tr>
<td>Middle</td>
<td>FLIR HOT, MASK</td>
</tr>
<tr>
<td>Track Mode</td>
<td>TRK AREA, TRK POINT</td>
</tr>
</tbody>
</table>

Copyright – The Images and Data presented herein are proprietary of the author and can not entirely or partially be copied or disclosed without author written authorization. For further information please contact du.guarino@gmail.com
Discussion

• The evaluation of this application was performed with HUD images produced by EMBRAER A1 (AM-X) aircraft, during the Brazilian Flight Test Course (CEV) carried out by the 2013 class students.

• In addition, the application was developed under MatLab® environment and tested with Intel®Pentium IV notebook and it was evaluated with more than 10,000 HUD frames.
Discussion

• The 39.61% training data was divided into three subsets, where 80, 15 and 5% data was used for training, validation and testing, respectively.

• The maximum iterations, performance goal and minimum performance gradient are set to 1000, 0 and 1×10^{-6}, respectively.

• The maximum validation failure σ and λ are set to 6, 5×10^{-5} and 5×10^{-7}, respectively.

• The achieved training, validation and testing successful rates are 99.65, 99.67 and 99.74%.

• In order to obtain more accurate performance of the trained neural network, another non-overlapping testing data set are used for the testing
Discussion

• The rest of the 60.39% of character images were used for testing trained neural networks with different sizes (i.e. 30, 40, 50, 70 and 100 neurons) and training sets (i.e. with and without noise added)

• Overall character recognition rate of the 60.39% testing data are around 96.8%

![Graph showing recognition rate vs. number of neurons with and without noise.](image)
Discussion

• Table shows the recognition rate of each word using the proposed algorithm.
• The algorithm for word recognition was setup to discard the image if the correlation coefficient (“r”) is less than 0.5.
• After evaluation, it was realized that the algorithm could validate 99.7% of words in the frames

<table>
<thead>
<tr>
<th></th>
<th>Menu</th>
<th>Top</th>
<th>Setup Mode</th>
<th>Middle</th>
<th>Track Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>recognition rate (%)</td>
<td>100</td>
<td>99,5</td>
<td>99,1</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Discussion

• In Fig. depicts an example of a single frame image processed by the application and the results. The usage of this application resulted in satisfactory performance.
Summary

• Usage of image processing and pattern recognition in images from HUD produces results that can increase flight tests efficiency.

• This paper proposed an automatic recognition system for text image recognition, based on a specific correlation algorithm and an ANN.

• The application allows reduction of processing time in post-mission operations for data extraction from HUD images.
Summary

• As future work:

1. Different strategies for pattern recognition (e.g. different ANN models) should be evaluated;

2. It is possible to use parallel processing techniques to improve image processing efficiency; and

3. Different setup schemes for post processing to improve the accuracy index should be experimented.
Acknowledgement

• We wish to thank the partial support given by IPEV, specially the 2013 class Flight Test Course Students.

• Also we like to thank FINEP under agreement 01.12.0518.00 that funded the development of this tool and FUNCATE that funded the presentation trip.